首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19093篇
  免费   104篇
  国内免费   223篇
航空   10236篇
航天技术   5774篇
综合类   314篇
航天   3096篇
  2021年   159篇
  2018年   225篇
  2016年   162篇
  2014年   471篇
  2013年   545篇
  2012年   454篇
  2011年   630篇
  2010年   445篇
  2009年   780篇
  2008年   834篇
  2007年   420篇
  2006年   445篇
  2005年   431篇
  2004年   464篇
  2003年   565篇
  2002年   504篇
  2001年   610篇
  2000年   405篇
  1999年   494篇
  1998年   485篇
  1997年   364篇
  1996年   428篇
  1995年   512篇
  1994年   507篇
  1993年   374篇
  1992年   369篇
  1991年   269篇
  1990年   251篇
  1989年   439篇
  1988年   218篇
  1987年   244篇
  1986年   249篇
  1985年   652篇
  1984年   529篇
  1983年   418篇
  1982年   492篇
  1981年   619篇
  1980年   250篇
  1979年   190篇
  1978年   189篇
  1977年   146篇
  1976年   155篇
  1975年   197篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   144篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
991.
In the past studies, different soil moisture estimation models were developed for bare soil areas by using remotely-sensed data. However, there are few models that can be used to estimate soil moisture in vegetated areas. Water Cloud Model (WCM) model is a widely used soil moisture estimation model has been developed for vegetated areas. In this study, the WCM model was extended to take soil roughness parameter into consideration. The modeling and its accuracy assessment were done by using multi-polarization Airborne Synthetic Aperture Radar (AIRSAR) images and ground data collected during field Soil Moisture Experiments.  相似文献   
992.
993.
A unique logic-based algorithm for atmospheric reentry hemisphere prediction is presented for spacecraft in low-eccentricity, prograde low Earth orbits at altitudes of 300 km and lower. Using two-line element (TLE) data for initial orbit conditions, coupled with coarse estimates for spacecraft aerodynamic characteristics, the algorithm relies on logical disjunction operations based on a dual analysis of histogram and two-weighted Gaussian probability density function (PDF) fits of predicted reentry latitude data. The algorithm requires the execution of a series of parametric simulations to determine the reentry hemisphere for variations in spacecraft aerodynamic coefficients and drag reference area. When implemented, the algorithm yields accurate hemisphere predictions on average 15 days from reentry as demonstrated by historical reentry cases from 1979 to 2018. All reentry cases were selected to demonstrate the algorithm’s ability to deliver accurate reentry hemisphere predictions for spacecraft with varying physical size and mass, and reentering during different periods of solar cycle activity.  相似文献   
994.
We highlight how the downward revision in the distance to the star cluster associated with SGR 1806–20 by Bibby et al. (2008) reconciles the apparent low contamination of BATSE short GRBs by intense flares from extragalactic magnetars without recourse to modifying the frequency of one such flare per 30 years per Milky Way galaxy. We also discuss the variety in progenitor initial masses of magnetars based upon cluster ages, ranging from ∼50 M for SGR 1806–20 and AXP CXOU J164710.2–455216 in Westerlund 1 to ∼17 M for SGR 1900+14 according to Davies et al. (2009) and presumably also 1E 1841–045 if it originated from one of the massive RSG clusters #2 or #3.  相似文献   
995.
Grasset  O.  Castillo-Rogez  J.  Guillot  T.  Fletcher  L. N.  Tosi  F. 《Space Science Reviews》2017,212(1-2):835-875
Space Science Reviews - Space exploration and ground-based observations have provided outstanding evidence of the diversity and the complexity of the outer solar system. This work presents our...  相似文献   
996.
Junocam is a wide-angle camera designed to capture the unique polar perspective of Jupiter offered by Juno’s polar orbit. Junocam’s four-color images include the best spatial resolution ever acquired of Jupiter’s cloudtops. Junocam will look for convective clouds and lightning in thunderstorms and derive the heights of the clouds. Junocam will support Juno’s radiometer experiment by identifying any unusual atmospheric conditions such as hotspots. Junocam is on the spacecraft explicitly to reach out to the public and share the excitement of space exploration. The public is an essential part of our virtual team: amateur astronomers will supply ground-based images for use in planning, the public will weigh in on which images to acquire, and the amateur image processing community will help process the data.  相似文献   
997.
The CORONAS-F mission experiments and results have been reviewed. The observations with the DIFOS multi-channel photometer in a broad spectral range from 350 to 1500 nm have revealed the dependence of the relative amplitudes of p-modes of the global solar oscillations on the wavelength that agrees perfectly well with the earlier data obtained in a narrower spectral ranges. The SPIRIT EUV observations have enabled the study of various manifestations of solar activity and high-temperature events on the Sun. The data from the X-ray spectrometer RESIK, gamma spectrometer HELICON, flare spectrometer IRIS, amplitude–temporal spectrometer AVS-F, and X-ray spectrometer RPS-1 have been used to analyze the X- and gamma-ray emission from solar flares and for diagnostics of the flaring plasma. The absolute and relative content of various elements (such as potassium, argon, and sulfur) of solar plasma in flares has been determined for the first time with the X-ray spectrometer RESIK. The Solar Cosmic Ray Complex monitored the solar flare effects in the Earth’s environment. The UV emission variations recorded during solar flares in the vicinity of the 120-nm wavelength have been analyzed and the amplitude of relative variations has been determined.  相似文献   
998.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   
999.
We present a method for designing nonuniform satellite systems for continuous global coverage using a combination of equatorial and near-polar satellite segments in circular orbits. Equations are derived to determine the basic design parameters of the satellite system itself and the conditions of its closure at the joint of near-polar and equatorial segments. We analyze specific features of near-polar and equatorial satellite systems and their advantages and disadvantages compared with existing classes of near-polar phased and kinematically correct satellite systems. We estimate the minimum required number of spacecrafts in satellite systems for a given fold of coverage and present calculated dependences for classes of near-polar phased and equatorial satellite systems with different types of closure. For the class of kinematically correct satellite systems, we analyze the characteristics of systems with a minimum spacecraft flight height and reveal that the number of satellites in the orbital plane depends on the flight height for different folds of coverage. We bring examples of the best near-polar equatorial satellite systems of global coverage for different folds and a class of satellite systems with a fixed number of spacecrafts and orbital planes in them.  相似文献   
1000.
Hard X-ray emitting symbiotic stars are candidates for SN Ia progenitors. The importance of Type Ia SNe as standard candles for cosmology makes the study of their progenitor systems particularly important. Additionally, they provide one of the most promising laboratories for the study of astrophysical jets. Typically, the X-ray emission in these systems is modeled with a collisional plasma model, sometimes with an emission measure distribution taken from a cooling flow model. The lack of any coherent periods in both X-rays and optical wave band strongly suggests that the accreting white dwarfs in the hard X-ray symbiotic stars are non-magnetic. Although relatively few have been discovered to date, but we believe that there are very many of them in our galaxy and could be possible candidates for the Galactic Ridge X-ray Emissions (GRXE).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号